
Distributed	B‐Tree	with	Weak	Consistency	

Gregor v. Bochmann and Shah Asaduzzaman1

School of Electrical Engineering and Computer Science, University of Ottawa, Canada
{bochmann@eecs.uottawa.ca}

1 now with Telenav, Inc., USA {shah.asaduzzaman@gmail.com}

Abstract: B-tree is a widely used data-structure indexing data for efficient Re-
trieval. We consider a decentralized B-tree, were parts of the structure are dis-
tributed among different processors and some parts are replicated, thus provid-
ing a decentralized indexing structure and parallel operations as desired by
modern-day cloud computing platforms. To accommodate the dynamic changes
due to data insertion/deletion and changes of the retrieval load, the state of the
B-tree is updated by splitting and merging tree-nodes. The traditional update al-
gorithms maintain strong consistency among the replicated states and possibly
involve very many tree-nodes. We show in this paper that data retrieval and up-
date can be performed correctly with much weaker consistency criteria. This al-
lows to decompose the necessary updates into smaller update operations that
involve only a limited number of tree-nodes, each. We show by analytical mod-
els and simulations that with weak consistency the average number of tree-
nodes that require updating is reduced compared to the traditional B-tree update
algorithms.

Keywords: B-tree, peer-to-peer systems, distributed data retrieval, weak con-
sistency, distributed update operations, distributed databases

1 Introduction

Massive-scale computing platforms such as computing clouds frequently operate
on huge volumes of data. Highly parallel operations are desired by such platforms due
to the large number of processing units they have. Consequently, appropriate organi-
zation of the data is required such that the high-volume and highly dynamic data set is
efficiently accessed and updated without any performance bottleneck.

 B-tree is a widely used and well-understood data-structure to index data for effi-
cient retrieval. Highly parallel operations are desired by modern-day cloud computing
platforms on high-volume and highly dynamic sets of data. This motivates decentral-
ized indexing structures for data-organization.

 In fact, the biggest concern for the cloud computing model, identified in the dis-
cussion on the cloud computing research agenda [5] and afterwards, is the enormous
overhead and the resulting infeasibility of the strong consistency model assumed in
many well-known operations in distributed systems. Thus, it is desired that distributed

and replicated-state data structures be designed in a way that they can tolerate some
degree of inconsistency and still function appropriately. This motivates us to design a
distributed implementation of the B-tree data structure that works with weak con-
sistency among its replicated components but provides strong consistency in terms of
search semantics.

 In this paper we identify the consistency conditions that are sufficient for correct
and efficient search operation on the distributed B-tree indexing data structure (Sec-
tion 3). We then define algorithms for updating the data structure keeping these con-
sistency conditions maintained (Section 4). The data structure is generalized for key-
spaces of arbitrary dimensions. The system model, assumptions and the particular
way of distributing the B-tree structure are introduced in Section 2.

2 System Model and Assumptions

2.1 B-tree structure

We consider the B+ -tree variant of the B-tree, which is possibly the most widely
used variant of the data structure. In a B+ -tree, all nodes have the same structure.
Each of the leaf nodes maintains data-keys pertaining to a certain range in the key-
space. Each internal node effectively maintains a list of entries, each containing a key-
range and a pointer to some other node corresponding to this range. B-trees were de-
signed for indexing one-dimensional data-spaces. So, the ranges were effectively
expressed by integer data-keys, or points in the linear key-space.

 Among the design goals of B-trees were (a) efficient use of disk blocks, and (b)
keeping the search tree balanced while growing or shrinking. For keeping the tree
balanced, a global parameter d is introduced which defines the maximum number of
entries to be held by a node. The root node of the tree describes the whole key-space
or key-universe and each of the other nodes describes a portion or sub-range of the
data-universe. Describing a range means dividing the range into sub-ranges and main-
taining pointers to the child nodes that describe each of the sub-ranges. If n is the
number of child pointers or sub-ranges described by a node, one normally maintains
the relation ڿd/2ۀ	≤n≤d in order to balance the amount of information stored in each
node. In the case of a one-dimensional key-space (as used in our examples), a sub-
range is characterized by two key values, the minimum and maximum key values of
the sub-range.

 In the following general discussion and the presented algorithms, we assume a
generalization of B-trees for key-spaces of arbitrary dimensions, instead of a single
dimension. Thus, we avoid any particular way of expressing the division of ranges,
such as by points for one dimension as in a B-tree, or by lines or rectangles for two-
dimensions as in Rtree [8] or Quad-tree [7]. We assume that each tree-node maintains
the definitions of N sub-ranges of the whole range it describes, along with one pointer
to another tree-node for each of the sub-ranges. Figure 1(a) shows an example of such
B-tree. In all our examples in this paper, we use a one-dimensional key-space with

consecutive sub-ranges. In the rest of the paper, the term B-tree will be used to denote
a centralized implementation of such a generalized tree-based indexing structure.

2.2 Distributed Implementations of B-tree

When the number of data records is huge and/or the access load becomes too large
for a single computer, a distributed B-tree must be considered. Simply replicating the
whole data structure on several computers is not practical because of the difficulty of
the update operations. In this paper we consider what we call “decentralized distribu-
tion”. For disambiguation between tree-nodes and processing nodes, we denote the
latter as processor, while node refers to tree-nodes.

Centralized distribution. The intuitive method for distributing the tree data struc-
ture is to place each tree-node on one processor. The scalable distributed B-tree pro-
posed by Aguilera et al. [2] and the tablet hierarchy in the internal representation of
Google’s Bigtable [6] structure use such representations. Although this allows the
update algorithms on the structure for data insertion/deletion to be similar to the cen-
tralized version, the processors holding the root or the higher level tree-nodes get
overburdened with search traffic. A typical solution to this problem, used in both [2]
and [6], is caching or replicating the higher level nodes of the tree in the user or client
computers, such that traversing higher level nodes can be avoided. However, this
involves additional overhead for maintaining consistency among the replicas, and
may not be suitable for highly dynamic data sets.

Decentralized distribution. An alternative distribution of the tree structure is pos-
sible, following the decentralized design philosophy, assigning equal workload and
the same role to each processor node. So, instead of assigning the responsibility of
one tree-node to one processor, one branch of the tree, i.e. the path from root to a leaf
node, is assigned to one processor. Thus, the higher level tree-nodes are, in a sense,
replicated in proportion to their usage, and hence, the workload due to traversal opera-
tions is equally distributed among the processors.

 To represent a branch of the tree, each processor i maintains a routing table data
structure RTi with multiple levels, each level representing one node of the branch.
Level l of RTi , denoted as RTl

i, corresponds to a level-l node of the B- tree. RTl
i is a

set of entries or tuples c together describing a range LRl
i in the key-space. Each r is a

sub-range of LRl
i and the corresponding j refers to some processor j (may be i itself)

that holds the level l-1 node of the B-tree describing r, that is, RTl-1
i represents the

child node and LRl-1
i = r. Representation of one branch to the leaf-node f for the ex-

ample B-tree in Figure 1(a) is shown in Figure 1(b).
 Because non-leaf nodes are replicated in multiple processors, one for each branch,

there are multiple options for j if l -1 is a non-leaf level, and any one of them may be
chosen for the entry <r, j>. Also, the range r for different entries in an RTl

i are non-
overlapping and the union of these ranges constitutes LRl

i (this is the same as in a
normal B-tree). The lowest level, RT0

i corresponds to a leaf node of the B-tree, and
stores the set of keys in the range LR0

i delegated to processor i, and the pointers to

corresponding data items. Note that the size of the tree state maintained at each pro-
cessor is O(logN), where N is the total number of keys in the whole structure.

 A similar distributed implementation of a tree structure has been proposed in [10],
called DPTree. Although a DPTree builds the tree-structure on top of a distributed
hash table used to name and discover the tree nodes, such decentralized structure can
be maintained without such overlay, as shown in [3] (see also [14]). In this paper we
do not consider distributed hash tables because we want to support range queries.

The above references consider that a single (global) B-tree is distributed and par-
tially replicated over all the processors. We call this situation global consistency. It
implies that updates of nodes in the upper part of the B-tree, which are replicated in
many processors, require complex update operations. We consider in this paper a
situation with weak consistency where an update of any node in the B-tree involves
only a few processors.

(a) An example of a B-Tree

(b) Consistent decentralized implementation of the B-tree. The view of the tree from
processor F (left). The routing table maintained by processor F is shown (right)

Fig. 1. A B-tree and its consistent decentralized implementation. The leaf-level tree- nodes are
referred by small letters (a, b, c, ...) and the processors holding the corresponding leaf-nodes are

referred by capital letters (A, B, C, ...)

2.3 Assumptions

We assume in this paper a decentralized distributed implementation of a B-tree as
described above. We assume that the processors can use an asynchronous message-
passing system [4], where each processor contains its own local memory (or persistent
storage), the processors communicate among them through messages, all processors
run the same program and there is no master clock to synchronize the events in the
processors.

 We follow a peer-to-peer model, where the search operation can be initiated from
any processor. Thus, the client application may consider any of the processors in the
distributed B-tree as a portal to the search service.

 For fault-tolerance, a processor in our model may be realized by a small cluster of
computers, replicating the state of one processor. Details of implementing a fault-
tolerant processor from faulty processing nodes may be found at [11]. We assume that
a message sent to another processor is eventually received by that processor in finite
amount of time, although messages may be delivered out of order. The message chan-
nels may be made reliable through use of an end-to-end transport protocol [1]. We
assume a complete network model, where any processor is able to send messages to
any other processor as long as the address of that processor is known.

3 Search and Updates in Decentralized B-Tree

3.1 Search algorithm

To search a target key dt (or a range rt) in the decentralized B-tree, the primary
goal is to find the processor i (or a set of processors P) such that dt ϵ LR0

i (or unioniϵP
includes rt). The search can be initiated from any processor. Navigation of the request
from the initiator to the target processor is performed by Algorithm 1. The initiator
processor calls the Algorithm 1 with level l parameter equal to the topmost level of its
own routing table.

Algorithm 1: Search(i, dt , l)
1: Initiator: processor i
2: Condition: a query received to resolve dt at level l
3: Action:
4: if l = 0 then
5: Result is processor i
6: else
7: Find <r,j> ϵ RTl

i , such that dt ϵ r
8: Forward the query to j as Search(j, dt , l -1)
9: end if

For range search, instead of finding one <r,j> ϵ RTl

i , all {<r,j> | r ∩ rt ≠ ϕ} are
looked up and the navigation proceeds next level to all the j’s in parallel. The time
complexity of both point and range search algorithms are clearly O(logN), although

the message complexity is higher for the range search (O(N) in the worst case, if all
the processors are included in rt).

3.2 Updates in a Globally Consistent Decentralize B-tree

The data structure needs to be updated as keys are inserted or deleted. The B- tree
data structure grows with key-insertion by splitting a node when the number of entries
overflows, and shrinks with key-deletion by merging two sibling nodes. In the decen-
tralized B-tree, leaf level split and merger are simple. However, because non-leaf
nodes are replicated in many processors, split/merge operations in non-leaf levels
require a large number of nodes to be updated atomically, which may require the up-
dates to be coordinated by a single master processor. In the worst case, when the state
of the root node is changed, the update needs to be atomically propagated to all the
processors.

 Figure 2(a) illustrates the split of the tree node f after insertion of data element 63
by maintaining a single consistent view of the tree at each processors. Splitting at the
leaf level is relatively simple. Part of the data-keys at processor F is now moved to a
new processor F2. Because the level-1 tree node is modified, level-1 at processors E
and G need to be updated. Also, whichever processor held F responsible for its level-0
range [60, 65) need to be updated about the change.

 When the level-1 tree-node, containing the range [50, 70) needs to be split (Figure
2(b)), it involves splitting the level-1 of processors E, F , F2 and G. This causes the
level-2 tree-node to have one new entry, which requires all the processors E through
K to add an entry at their level-2. Finally, whichever processors held any of E, F , F2
or G responsible for its level-1 range now need to update their pointers. Thus even a
level-1 split for consistent B-tree with fan-out of only 2 - 4 involves atomic update of
the states at 10 - 12 processors.

 The huge overhead of large-scale atomic updates in the consistent decentralized
B-tree structure motivates us to look for weaker consistency conditions that are easy
to maintain through much smaller-scale updates, and yet sufficient for correct search
operations.

3.3 How Much Consistency is Needed?

Here we define consistency conditions among the components of the decentralized

B-tree structure maintained by different processors that are sufficient for ensuring the
correctness of the search operation through Algorithm 1, but weaker than the con-
straint that all component-states are consistent with a single global B-tree.

 First, any processor should be able to initiate the search, so every processor
should maintain a description of the key-space universe (U) at the topmost level of its
routing table. We call this condition invariant of universal coverage:

AU : for all i : LRm

i = U , where m is the highest level in RTi

(a) Splitting leve-0 range [60,65)

(b) Splitting level-1 range [50, 70)

Fig. 2. Updates in a consistent decentralized B-tree. The original tree is shown in Figure 1

 For correct navigation, if an entry <r, j> is in RTl
i , then its target j must describe

at least the range r at level l - 1. Formally, this defines the invariant of navigability:

AN : for all i and l : <r, j> ϵ RTl

i implies r is included in LRl-1
j

 Another condition is necessary depending on the semantics of the search opera-

tion. If we allow different processors to have overlapping local ranges at the leaf lev-
el, then for a search query for dt , where dt ϵ LR0

i and dt ϵ LR0
j with i ≠ j, Algorithm 1

ensures delivery of the query to at least one of i and j. This result is correct, if all keys
in the intersection of LR0

i and LR0
j are available in both TR0

i and TR0
j . If overlap-

ping coverage of ranges by different processor does not imply such exact replication
of all keys in the common range, then the usual semantics of search requires the query
to reach all such processors. To keep things simple, we impose the following invari-
ant of disjoint local ranges:

ALR : for all i and l : i ≠ j implies LR0
i and LR0

j are disjoint.

Theorem 3.1: AU, AN and ALR are sufficient conditions for the correctness of ex-
act and range search operations in the decentralized B-tree using Algorithm 1.

Proof. Line 8 of Algorithm 1 ensures that the algorithm proceeds at least one level
towards level 0 at each hop. Thus the algorithm terminates in a number of steps not
larger than the maximum number of levels in the routing table of any processor.

At each hop in the navigation, an entry <r, j> ϵ RTl
i , dt ϵ r must always be found at

Line 7. AU ensures that, if such an <r1, p> is found at level l of the current processor
i, an entry <r2, q>, dt ϵ r2 can be found at level l - 1 of the next hop processor p. So, by
induction, we observe that the query is finally forwarded to a processor p such that dt
ϵ LR0

p . ALR ensures that only one such processor exists. The proof can be easily
extended to show the correctness of the range-search algorithm.

 The decentralized B-tree structure that maintains the conditions AU , AN and AR,
in general, is a weakly-consistent structure, because several conditions valid in the
consistent decentralized B-tree structure have been relaxed. For example, in the nor-
mal B-Tree structure, we have a stronger invariant of navigablity

AN(strong) : for all i and l : <r, j> ϵ RTl
i implies r = LRl-1

i
where r is equal to LRl-1

i instead of included. Also, in the consistent structure, each
level of the routing table contains a self-pointer, i.e. the condition

Self-pointer: for all i and l : there exist <r, j> ϵ RTl
i

is valid, but this is not maintained in the weakly-consistent structure. In addition, the
number of levels of the routing table may be different for different processors. The
condition that each node in the tree must maintain a number of entries n such that
 .d, is also relaxed. The lower and upper limits are now rather soft-limits	n		ۀd/2ڿ
As a result, the cascaded split or merge operations are treated as separate update oper-
ations.

 Figure 3 shows how a weakly-consistent B-tree structure may grow through inser-
tion of data-keys. Initially, through the first three steps, the view of the tree remains
consistent for all three processors A, B and C . From step-4 onwards, different proces-
sors may have different views of the tree. It may be noted that with such weak-
consistent updates, the view of the data structure at some processors may no longer
remain a single connected tree. Rather, the view may be of several disconnected seg-
ments of the tree. Nevertheless, each processor maintains sufficient information to
route any search query originated at any processor.

 The update operations are initiated independently and asynchronously by individ-
ual processors. Compared to the updates in a consistent B-tree shown in Figure 2,
which, even for a level-1 split, require updating the states of a large number of pro-
cessors atomically, updates here are much less invasive. For example, starting from
the same states as in Figure 2, weak-consistent updates at level-1 could be initiated
independently by the processors E, F, F2 and G, and each of them would involve the
states of 3 - 4 processors known to them by routing table entries. The algorithms pre-
sented in the next section will explain these asynchronous updates.

Fig. 3. Evolution of a weak-consistent B-tree with asynchronous updates. To facilitate asyn-
chronous update, each processor i maintains a table BKi in addition to RTi . BKl

i holds the
names of all processors that hold RTl

i responsible for the whole or some part of LRl
i

The update operations are initiated independently and asynchronously by individu-
al processors. Compared to the updates in a consistent B-tree shown in Figure 2,
which, even for a level-1 split, require updating the states of a large number of pro-
cessors atomically, updates here are much less invasive. For example, starting from
the same states as in Figure 2, weak-consistent updates at level-1 could be initiated
independently by the processors E, F, F2 and G, and each of them would involve the
states of 3 - 4 processors known to them by routing table entries. The algorithms pre-
sented in the next section will explain these asynchronous updates.

 Although the weak consistency leads different processors to maintain different
views of the tree, the search operation remains correct and can be initiated from any
processor. The search always progresses one level at each hop, and thus, terminates
after a number of hops equal to the maximum height of the tree (i.e. the maximum
level in the routing table) in any of the views.

4 Updates with Weak Consistency

In this section we describe the atomic update operations needed to adapt the decen-
tralized B-tree structure when data keys are inserted or deleted, or when some proces-
sor is overloaded. The basic insertion and deletion operations works similarly as in a
traditional B-tree, i.e. first the target key (or its position) is searched, and then the
deletion or insertion is performed. Insertion of keys may cause overflow in a leaf level
node, which then splits, and the split may be cascaded to higher level nodes. Similarly
deletion of keys cause underflow and triggers merger of nodes. Because lower and
upper limits in the number of entries are now soft-limits, the cascading splits (or mer-
gers) are treated as separate atomic operations. Here we define the atomic split and
merge update operations for leaf level and non-leaf level separately. The update algo-
rithms assume that the three consistency conditions AU , AN and ALR are satisfied
when the update is started, and assure that the conditions will be satisfied again when
the update completes.

 The update algorithms are triggered independently by any processor. One princi-
ple followed in the design of the update algorithms is to modify the states of a mini-
mal number of processors. Specifically, the modification is limited to the neighbour
processors only, i.e. the processors known to the local routing table of the initiating
processor. To facilitate the updates, an additional table called backward pointer table
is maintained by each processor (the table of processor i is denoted as BKi). For any
processor i, BKi has the same number of levels as RTi . j ϵ BKi if and only if <r, i> ϵ
RTl+1

j .
 Each update operation may need to modify the states (routing tables) of a few

neighbouring processors. To ensure correctness in the presence of concurrent updates,
some concurrency control mechanism must ensure atomicity of each update. To allow
a higher degree of parallelism, a version-number-based optimistic transaction proto-
cols may be used [9]. In this method, a counter or version number is maintained for
the state of each processor. The version number is incremented whenever the state is
successfully modified. The initiating processor that executes the update algorithm

reads the necessary states along with their version numbers. After computing the
modified state locally, it then attempts to commit the new states to appropriate pro-
cessors. The update transaction is aborted if any of the states in the write-set has a
different version number than the one that was read initially. Aborted transactions are
retried at a later time. While describing the update algorithms, we clearly mention
which processor initiates it (initiator), and which state in which processors are read
(Readset) and updated (Writeset). Version control may be applied at different granu-
larities on the states. Each row of RT and BK tables at each processor may be sepa-
rately versioned for maximum parallelism.

4.1 Split Algorithms

Algorithm 2 describes the procedure to split the local range LR0
i of processor i into

2 disjoint ranges LR1 and LR2 , and offloading LR2 to a newly recruited processor j.
Because i loses part of LR0

i , for all p ϵ BK0
i , RT1

p need to add entries pointing to the
new processor j instead of i for the lost part of the range. BK0

i may include i if RT1
i

has a self-entry (Lines 6-13). In addition to the leaf level, the topmost level of the
new processor j’s routing table, RTm

j is initialized by a replica of RTm
i (Line 13).

Mid-levels of RTj remains empty. For the nodes newly pointed to by j at level m, their
backward pointers are updated (Line 14).

 Algorithm 3 is executed when processor i wants to offload some entries from its
routing table RTl

i at level l > 0. Unlike the case of leaf-level split, no new processor is
recruited here. So, the major challenge here is to find an existing processor j, whose
routing table at the same level, RTl

j , either already contains some entries covering
some common range with LRl

i, or, have some space to take few entries from RTl
i. In a

consistent distributed B-tree, we have for all j : if <r, j> ϵ RTl
j then RTl

j = RTl
i . Thus,

neighbours in RTl
i are natural target for offloading part of RTl

i. In the weak-consistent
structure, it is not certain that such a j will be found in RTl

j , so, other neighbours are
searched including all backward pointers. Also, in the leaf-level split, the mid-levels
of the new processor’s routing table are kept empty. Non-leaf level splits are initiated
for the lowest overloaded level. So, there is high possibility of finding a j in RTl

i with
empty space in RTl

j .
 Once a suitable j is found, the update procedure is straightforward. The entries are

transferred from RTl
i to RTl

j and BKl-1
p are updated for the processors corresponding

to the transferred entries (Lines 6-8). Then for the processors in BKl
i, i.e. those who

held i responsible for some part of LR l
i , now need to update for the range shifted to j,

by adding a new entry in the level l + 1 of their routing tables. Backward pointers of i
and j are also updated accordingly (Lines 9-13). Finally, if the topmost level of RTl

i is
split, one additional level is added to hold the pointer to the transferred range, such
that the whole universe is described.

Algorithm 2: SplitLeafNode(i)
 1: Initiator: processor i
 2: Condition: RT0

i is overloaded, in terms of storage or access load
 3: Action:

 4: Partition RT0
i into two disjoint sets of keys D1, D2

 and LR0
i into two corresponding ranges LR1, LR2

 5: Find a new processor j
 6: RT0

i := D1 ; RT0
j := D2 ;

 7: LR0
i := LR1 ; LR0

j := LR2 ;

 8: for all p ϵ BK0
i do

 9: there must exist <x,i> ϵ RT1
p with x = LR0

i

10: RT1
p := RT1

p \ <x,i> union {< LR1, i> , < LR2, j> }
11: add {p} to BK0

j
12: end-for
13: RTm

j := RTm
i where m is the topmost level of RTi

14: for all p such that <r, p> ϵ RTm
i do add {j} to BKm-1

p

Algorithm 2: SplitNonLeafNode(i, l)
 1: Initiator: processor i
 2: Condition: RTl

i has too many entries or is causing too much routing load
 3: Action:
 4: find some existing processor j such that RTl

j is empty
 or has some overlap with LRl

i
 5: partition LRl

i into two subranges Rs and Rx
 where Rx is equal to the overlap (if there is one)
 and partition RTl

i into two corresponding sets Es and Ex
 6: RTl

i := RTl
i \ Ex

 7: if there is no overlap do RTl
j := Ex

 8: for all p such that <r, p> ϵ Ex do delete {i} from BKl-1
p and add {j}

 9: for all p ϵ BKl
i do

10: there must exist <x,i> ϵ RTl+1
p where x is included in LRl

i

11: remove <x, i> from RTl+1
p and add < Rs, i>

12: add < Rx, j> to RTl+1
p

13: add {p} to BKl
j ; if x ∩ Rs = ϕ do remove {p} from BKl

i
14: if l is the topmost level of the routing table RTi do
15: RTl+1

i := {< Rs, i> , < Rx, j> } ; add {i} to BKl
i

For finding an existing processor j that can be used for off-loading some of the en-

tries from RTl
i (see line 4 of the SplitNonLeafNode algorithm), we have explored two

algorithms by simulation [12] : (1) The Ping algorithm checks the descendants of RTl
i

in the distributed B-Tree to check whether their processor contains at level l en empty
routing table or a table that has an overlap with RTl

i . If no suitable processor j is
among them, then the algorithm checks the next-lower descendents of RTl

i in the tree,
possibly until level 0 is reached. (2) The Ping-Pong algorithm goes down one level
(like the Ping algorithm) but then follows the back-pointers that point to routing tables
at level l. Because of the two steps, a larger number of processors is reached. Again, if
no suitable processor j is found, the Ping-Pong process is repeated by going down two
levels and going up two levels, and so on.

Our simulation studies confirmed that both of these algorithms always find a suita-
ble processor j in reasonable time on average [12].

4.2 Merge Algorithms

When there are too few data items in a processor i, it decides to release itself by
merging its items and routing table with those of another processor. Algorithm 4,
described in detail in an earlier version of this paper [13], describes the update proce-
dure for such a merger. First a suitable partner j for the merger is selected among the
processors backpointed at level 0, such that RT1

j points to i for some range x included
in LR0

i. If RT1
i is pointing to j for some other range y, then after the merger, the two

entries <x, i> and <y, j> can be merged into <x union y, j>. Because processor i is
being released, all levels of its routing table are merged with the corresponding level
of j’s routing table. Accordingly, for all l and p ϵ BKl

j , RTl+1
p are updated.

Similar to the level-0 merger, if any other level l of the routing table of a processor
i is found under-loaded, the entries of that level can be merged with the same-level
entries in another processor. The merging partner, j, is found in a similar way as be-
fore, among the p ϵ RTl+1

p , so that after the merger one entry is eliminated there. If
RTl+1

p is the topmost level, and contains only one entry after the merger, then that
level may potentially be eliminated. This procedure, called Algorithm 5, is also de-
scribed in [13].

4.3 Proving the invariants

Theorem 4.1: The update algorithms, Algorithms 2, 3, 4 and 5 maintain the invari-
ants AU , AN and ALR .

AU : Algorithm 2 maintains AU in the newly joined processor j by copying the top
level of the routing table of i (Line 14). In Algorithm 3, the range LRl+1

p in all p ϵ
BKl

i remains unchanged by the modification following Line 9. If RTl
i is the topmost

level in RTi then the additional update in Line 14 ensures AU for processor i. Con-
cerning Algorithms 4 and 5, see [13].

AN : AN can be violated only when LRl
i for some processor i and some level l is

reduced. In Algorithm 2, LR1
i is reduced, and so, RT1

p is updated for all p ϵ BK0
i to

maintain AN (Line 10). A similar update is performed in Line 13 of Algorithm 3, for
the reduction in LRl

i.
ALR : Violation of ALR is possible only when RT0

i is created or extended for any
i. In Algorithm 2, LR0 is modified for processors i and j only, and no overlap is
formed (Line 7). In Algorithm 4, LR0

i and LR0
j are merged into LR0

j , and then pro-
cessor i is removed. So no overlap is created. Algorithms 3 does not modify LR0 of
any processor.

 In an elementary state of the decentralized B-tree structure, when there is only
one processor having only one level in its routing table, all the invariants AU , AN
and ALR are valid. So, by induction over successive updates, it can be proved using
Theorem 4.1 that all three invariants are always maintained for the structure. Also, all
four update algorithms work assuming the three invariants only. Validity of the back-

ward pointers is also maintained in these algorithms whenever a forward pointer is
updated.

5 Discussion

As mentioned in Section 2.2, we use a decentralized distributed implementation of
the B-Tree similar to the BPTree [10] or as in [3]. The main difference is that we
relax in this paper the requirement for global consistency of the B-Tree data structure.
Through the use of the weak consistency the tree update operations (split and merge)
can be performed much more effectively. In the decentralized B-tree architecture, the
average number of processors involved in a routing table split operation at level l (the
SplitNonLeafNode algorithm described above) is (2 + b) which is independent of the
level. Here the number 2 accounts for the processor i of the node being split and the
node j to which some of the entries are transferred. b represents the average number
of back-pointers of the split node. This value is equal to the average fan-out of a node,
which is ¾ d (if we assume that the relation ڿd/2ۀ	≤n≤d is maintained).

In the case of a B-Tree with global consistency, all copies of the routing table at
level l must be updated concurrently in a single transaction. Since the number of cop-
ies of a routing table at level l is bl, this becomes a very big number when the level is
close to the root, and if the root table must be updated, this involves all processors.

This shows the main advantage of weak consistency. The main disadvantage of
weak consistency is the fact that it is more difficult to find a suitable processor for
node splitting or merging due to the irregular structure of the B-tree after repeated
data insertions and deletions. We note, however, that the average number of tree
nodes to be updated due to a single data object insertion is the same for strong and
weak consistency. If we assume that the number of data objects per processor is also
limited by d, then the probability that a data insertion leads to the splitting of a leaf
node is equal to 2/d (assuming that the number m of data objects is in the range ڿd/2ۀ	
≤ m ≤ d). And such a split will lead to the update of b routing tables at level 1,
where again, for each of these updates, there is the probability of 2/d that the routing
table at level 1 will be split (i.e. b * 2/d = 1.5 splits at level 1), and so on. Therefore,
the average number of routing tables to be split after one data object insertion is given
by 2/d (1 + 1.5 + 1.52 + … + 1.5N) . In the case of the B-Tree with weak consistency,
these splits can be performed as separate transactions, each involving only (2+b) pro-
cessors (as mentioned above). In the case of strong consistency, the probability of
having a split at level l after a data object insertion is equal to (2/d)l+1 , however, the
number of processors involved for an split at level l would be (¾ d) l , which be-
comes prohibitive for the root node.

6 Conclusion

We have demonstrated that it is possible to distribute a B-tree for data retrieval
over a large number of processors with partial replication of the interior nodes of the

tree over the different processors without full consistency. Enforcing only weak con-
sistency conditions necessary for the correct operation of the retrieval function, it is
possible to define tree update operations that can be initiated by one of the processors
and would involve only the local state of the tree and the state in a few neighbour
nodes, without requiring simultaneous updates in all processors that have a replica of
the state being updated.

 We have proved that the new update algorithms maintain our weak consistency
conditions and that these conditions guarantee correct operation of the data retrieval
algorithm that requires L steps where L is the depth of the B-tree. Through our simu-
lation studies, we have shown that the depth of the tree can be maintained over a long
period of tree update operations at the optimal level of L = log(N), where N is the
number of processors in the system.

References

1. Y. Afek and E. Gafni. End-to-end communication in unreliable networks. In PODC?88:
Proc. 7th ACM Symposium on Principles of Distributed Computing, pp.131-148, 1988.

2. M. K. Aguilera, W. Golab, and M. S. Shah. A practical scalable distributed B-tree. Proc.
VLDB Endow, 1(1):598-609, 2008.

3. S. Asaduzzaman and G. v Bochmann, GeoP2P: An adaptive peer-to-peer overlay for effi-
cient search and update of spatial information. Unpublished document,
http://arxiv.org/abs/0903.3759, 2009.

4. A. Bar-Noy and D. Dolev. A partial equivalence between shared-memory and message-
passing in an asyn. fail-stop distr. env., Mathematical Systems Theory, 26:21-39, 1993.

5. K. Birman, G. Chockler, and R. v Renesse. Toward a cloud computing research agenda.
ACM SIGACT News, 40(2):68-80, 2009.

6. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: a distributed storage system for structured data.
ACM Transactions on Computing Systems, 26(2):1-26, 2008.

7. R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite keys.
Acta Informatica, 4(1):1-9, 1974.

8. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD, 84,
pages 47-57, Jun. 1984.

9. H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM
Trans. Database Syst., 6(2):213-226, 1981.

10. M. Li, W. Lee, and A. Sivasubramaniam. DPTree: A Balanced Tree Based Indexing-
Framework for Peer-to-Peer Systems. In 14th IEEE ICNP, pages 12-21, Nov. 2006.

11. F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Computing Surveys, 22(4):299-319, 1990.

12. K.B. Hafaiedh, Studying the properties of a distributed decentralized B+ tree with weak
consistency, Master Thesis, University of Ottawa, Oct. 2012.

13. S. Asaduzzaman, G.v. Bochmann, Distributed B-tree with weak consistency, unpublished
report, see http://www.site.uottawa.ca/~bochmann/Curriculum/Pub/2010 - Distributed B-tree with weak consistency.pdf

14. S. Asaduzzaman, G.v. Bochmann, A locality preserving routing overlay using geographic
coordinates, IEEE Intern. Conf. on Internet Multimedia Systems Architecture and Applica-
tion, Bangalore, India, Dec. 2009.

